INFORMATION
RETRIEVAL

Week 5 — Index Compression

Today

1 2 3

Exercise Recap Theory Kahoot / Exam
questions

» Discussion - BSBI » Exercise 4: Index Construction

* Questions - SPIMI

Index updating

Logarithmic merging

28.03.2025 2

Online Resource

B+-trees visualization

Visualization of Data Structure by Prof. Dr. Galles
www.cs.usfca.edu/~qgalles/visualization/BPlusTree.html

Definition might differ from what we defined in the lecture
though!

28.03.2025

http://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

Bonus Exercise

Tolerant Retrieval

28.03.2025

Which of the following is a correct statement?

) a. Lookup in a hash index is constant. Lookup in a B-tree index is linear.

" b. Lookup in a hash index is linear. Lookup in a B-tree index is logarithmic.

) ¢. Lookup in a hash index is constant. Lookup in a B-tree index is constant.
) d. Lookup in a hash index is constant. Lookup in a B-tree index is logarithmic.

) e. Lookup in a hash index is logarithmic. Lookup in a B-tree index is linear.

Bonus Exercise

Tolerant Retrieval

Which of the following is a correct statement?

) a. Lookup in a hash index is constant. Lookup in a B-tree index is linear.

) b. Lookup in a hash index is linear. Lookup in a B-tree index is logarithmic.

() ¢. Lookup in a hash index is constant. Lookup in a B-tree index is constant.
® d. Lookup in a hash index is constant. Lookup in a B-tree index is logarithmic.

() e. Lookup in a hash index is logarithmic. Lookup in a B-tree index is linear.

28.03.2025

Bonus Exercise

Tolerant Retrieval

Mark each one of the following statemnts as True or False

True False
A B+-Tree is always balanced.
B+-Trees don't support range search.

The linked list structure of leaf nodes in a B+-Tree allows range
queries to run in O(N) time complexity.

B+-Trees are ideal for all types of key-value storage, including
workloads with frequent insertions and deletions.

28.03.2025

Bonus Exercise

Tolerant Retrieval

Mark each one of the following statemnts as True or False

True False
@ A B+-Tree is always balanced.
O] B+-Trees don't support range search.
O, (J The linked list structure of leaf nodes in a B+-Tree allows range
gueries to run in O(N) time complexity.
O] B+-Trees are ideal for all types of key-value storage, including

workloads with frequent insertions and deletions.

28.03.2025

Bonus Exercise

Tolerant Retrieval

Edit (Levenshtein) Distance (Part 1)

Complete the following table on a notepad to compute the edit distance between the words s1="cake"
and s,="lame" (refer to the algorithm in Figure 3.5, page 59 of the book):

28.03.2025

Cla

k

2|3

4

R oo BT S e]
5

039

1. What are the four missing numbers in the last ROW?

Column c:

Column a:

Column k:

Column e:

Bonus Exercise

28.03.2025

Tolerant Retrieval

Edit (Levenshtein) Distance (Part 1)

Complete the following table on a notepad to compute the edit distance between the words s;="cake" and s,="lame" (refer to the algorithm in Figure 3.5, page 59
of the book):

Cl a

k

1

2|3

Oaﬂl
W= O

1. What are the four missing numbers in the last ROW?

Columnc:

Column a:

Column k:

Column e:

4

w

Bonus Exercise

Tolerant Retrieval

Edit (Levenshtein) Distance (Part 2)

We use subscript i for the rows and j for the columns in the table.

This question is about the table m used to calculate the edit (levenshtein) distance between words s; and s,. Recall that cell m[ij] (i.e. the edit distance between the
first | characters of the first word (s1) and the first j characters of the second (s;)) is the minimum of m[i-1;j]+1, m[ij-1]+1 and either m[i-1j-1] (if s4[i+1] = s;[j+1])
or m[i-1j-1]+1 otherwise.

What does each of these terms represent, in terms of character edits (insert, delete, replace)? Choose the option with the correct values to replace the one or
multiple underlines __. (the order matters, the first value should replace the first __, the second value the second __, etc)

a) m[i-1,]1+1 is the cost of deleting s4[__] from s4[0 ... i], then editing s4[0 ... i-1] into s;[0 ... j].
O [

O [i-1

O -1

Ol

b) m[ij-1]+1 is the cost of editing s4[__]into s;[__], then inserting s[__1.

O10..i, [0..j-11, (]

(0 [0..1], [0...j-1], -1]

(0 [0...j-1, [0 ...i-1], []

¢) m[i-14-1] is the cost of editing s4[__]into s;[__]. In addition, +1 is added to the cost for replacing s{[__] with s;[__1, but only if they are not already the same.
O 0..i-15, [0...j-11, (1.]

(O [0...i-1], [0 ...j-1], [i], (]

O 0 ...j-11, [0 ... i-1], [, [i]

28.03.2025

Bonus Exercise

Tolerant Retrieval

Edit (Levenshtein) Distance (Part 2)

We use subscript i for the rows and j for the columns in the table.

This question is about the table m used to calculate the edit (levenshtein) distance between words s; and s;,. Recall that cell m[ij] (i.e. the edit distance between the
first i characters of the first word (s1) and the first j characters of the second (s;)) is the minimum of m[i-1,j]+1, m[ij-1]+1 and either m[i-1;j-1] (if s1[i+1] = s3[j+1])
or m[i-1,j-1]+1 otherwise.

What does each of these terms represent, in terms of character edits (insert, delete, replace)? Choose the option with the correct values to replace the one or
multiple underlines __. (the order matters, the first value should replace the first __, the second value the second __, etc)

a) m[i-1,j]+1 is the cost of deleting s¢[__] from s4[0 ... i], then editing s4[0 ... i-1] into s;[0 ... J].
® [i]

O [i-1

O -1

O]

b) m[ij-1]+1 is the cost of editing s4[__] into s;[__], then inserting s;[_1.

@ [0..i, [0..j-11, (]

O [0..1], [0..j-1], [-1]

(0 [0..j-11, [0 ...i-11, 1]

¢) m[i-1;-1] is the cost of editing s;[__] into s;[__]. In addition, +1 is added to the cost for replacing s;[__] with s;[__], but only if they are not already the same.
O [0 ...i-1], [0 ... j-11, (1, [i]

@ [0...i-1], [0 ... j-1], [i, 1]

O0..j-11, [0 ...i-1], (1 [l

28.03.2025

Bonus Exercise

Tolerant Retrieval

28.03.2025

Jaccard Coefficient (Part 1)

Calculating the edit distance between strings is expensive. A useful heuristic to estimate which
strings are likely to have a small edit distance is the number of tri-grams (3-grams) they share.
In this example, consider the symbol $ at the start and end of every word when computing tri-
grams.

a) How many tri-grams does the misspelt word recivee share with possible correction receive?

-

b) How many tri-grams does the misspelt word recivee share with possible correction recipe?

-

Bonus Exercise

Tolerant Retrieval

Jaccard Coefficient (Part 1)

Calculating the edit distance between strings is expensive. A useful heuristic to estimate which strings are likely to have a small edit distance is the
number of tri-grams (3-grams) they share.

In this example, consider the symbol $ at the start and end of every word when computing tri-grams.

a) How many tri-grams does the misspelt word recivee share with possible correction receive?

= |

b) How many tri-grams does the misspelt word recivee share with possible correction recipe?

El

28.03.2025

Bonus Exercise

Tolerant Retrieval

Jaccard Coefficient (Part 2)

Calculating the edit distance between strings is expensive. A useful heuristic to estimate which strings
are likely to have a small edit distance is the number of tri-grams they share.
In this example, consider the symbol $ at the start and end of every word when computing tri-grams.

Counting the number of shared elements in two sets will be biased towards larger sets, as the larger
the set, the more likely it is to contain a given element, simply by chance. The Jaccard coefficient
corrects for this by normalising with respect to the size of the sets: J(A,B) = |An B|/|]A U B

Calculate the Jaccard coefficients for the following word pairs:
a) The Jaccard coefficient for J(recivee, recipe) is ...

O 3/8

() 3/10

O 2/1

b) The Jaccard coefficient for J(recivee, receive) is ...

O 5/11

O 3/11

() 4/9

28.03.2025

Bonus Exercise

Tolerant Retrieval

Jaccard Coefficient (Part 2)

Calculating the edit distance between strings is expensive. A useful heuristic to estimate which strings are likely to have a small edit distance is the number of tri-
grams they share.
In this example, consider the symbol $ at the start and end of every word when computing tri-grams.

Counting the number of shared elements in two sets will be biased towards larger sets, as the larger the set, the more likely it is to contain a given element, simply
by chance. The Jaccard coefficient corrects for this by normalising with respect to the size of the sets: J(A,B) = |An B| /]A U Bj

Calculate the Jaccard coefficients for the following word pairs:
a) The Jaccard coefficient for J(recivee, recipe) is ...

() 3/8

@ 3/10

Q) 2/7

b) The Jaccard coefficient for J(recivee, receive) is ...

O 5/11

@ 3/11

() 4/9

28.03.2025

Bonus Exercise

Tolerant Retrieval

Jaccard Coefficient (Part 3)

In this example, consider the symbol $ at the start and end of every word when computing tri-grams.
Which is the more likely correction for the misspelt word recivee, based on the Jaccard similarity index?

_ recipe
() receive

28.03.2025

Bonus Exercise

Tolerant Retrieval

Jaccard Coefficient (Part 3)

In this example, consider the symbol $ at the start and end of every word when computing tri-grams.
Which is the more likely correction for the misspelt word recivee, based on the Jaccard similarity index?

® recipe
() receive

28.03.2025

Index Construction

Term conversion

Inefficient!
Better: Use TermIDs

28.03.2025

cru [N
e K v retieval
computer [information n Zdrich
daa [HEHN o o
information
Zirich
Ziirich CPU
ETH information
CPU n computer e 5
data retrieval S
retrieval n

Index Construction

Term conversion

let's take 10 bytes in average 4 bytes

Term-TermID mapping

14 bytes x 100,000,000 = 1.4 GB

t1 ETH

¥

+ K

4 bytes (always) 4 byte

8 bytes x 100,000,000 = 0.8 GB
28.03.2025

Index Construction

Constructing the index

Optimize:

« (Capacity (we want high)

« Latency (we want low)

* Throughput (we want high)

Use RAM for most of the work. Try to have few
requests to disk.

28.03.2025

Index Construction

Blocked Sort-Based Indexing (BSBI)

1. Shard the collection of documents (i.e. split
them up into blocks)
-> Batch processing

R

—gm— P
. . \\\

28.03.2025

Index Construction

Blocked Sort-Based Indexing (BSBI)

2. Process each block one by one in memory
* Parse termlD-doclID pairs

e Sort pairs according to termiD =
* Write back intermediate results

Parse and read
termID-docID pairs =~ =
into memory

28.03.2025

BSBI

Generating termliDs

28.03.2025

3)
e —
—— —-—
I)
— —

Strategy 1
Do a first pass to
build term-termID mapping

| |
Strategy 2
On the fly

Index Construction

Blocked Sort-Based Indexing (BSBI)

2. Process each block one by one in memory
« Parse termlID-docID pairs

« Sort pairs according to termID

* Write back intermediate results

28.03.2025

Index Construction

Blocked Sort-Based Indexing (BSBI)

2. Process each block one by one in memory
« Parse termlID-docID pairs

« Sort pairs according to termiD m—) -
* Write back intermediate results

28.03.2025

Index Construction

Blocked Sort-Based Indexing (BSBI)

3. Merge intermediate results into the —
final index.

| —
=) e
 E—

|
|
|

28.03.2025

Index Construction

Blocked Sort-Based Indexing (BSBI)

Complexity: O(T log T)

* First and second step (sorting): O(T log T)
* Third step (merging): O(T)

T = #tokens

28.03.2025

Index Construction

Single-Pass In-Memory Indexing (SPIMI)

1. Shard collection of documents to blocks _

R

—gm— P
. . \\\

28.03.2025

Index Construction

Single-Pass in-Memory Indexing (SPIMI)

2. Process each block

 Parse term-doclD pairs — o —— — —— —
» Create a dictionary 0 S i

« Sort on terms
 Write back intermediate results

28.03.2025

Index Construction

Single-Pass in-Memory Indexing (SPIMI)

2. Process each block

« Parse term-doclD pairs e Sl S e
* Create a dictionary S i e

« Sort by terms
 Write back intermediate results

28.03.2025

Index Construction

Single-Pass in-Memory Indexing (SPIMI)

2. Process each block

 Parse term-doclD pairs e e i
* Create a dictionary -

e Sort by terms

* Write back intermediate results - -

-> No term-termID mapping in memory!

28.03.2025

Index Construction

Single-Pass in-Memory Indexing (SPIMI)

3. Final merge

- === - ———
by, R s o B e e P e e e e o e e
-

28.03.2025

Index Construction

Single-Pass in-Memory Indexing (SPIMI)

Complexity: O(T)

* First step (processing): O(T log M)
« Second step (final merge): O(T)

T = #tokens, M = #terms

What is the difference?

28.03.2025

Index Construction

BSBI SPIMI

« Keeps term-term|D mapping in memory * Does not need a term-termID mapping

* First pass or “on the fly” for collecting * Adds postings directly to intermediate postings
term-termID mapping lists

* Merges to postings list in disk at the end * More scalable since not limited by memory size

« Uses less memory, is faster

28.03.2025

Index Construction

MapReduce

N o . o & o

Ty

Partition

28.03.2025

Mappers

Reducers

information

information

ETH 1
computer
data
information
CPU
ETH
information
computer

information : _
information

] 1]2]4[s]8]0]

information

information

, . information n
information

Index Construction

Counting Pokémon

28.03.2025

Index Construction

Mappers

28.03.2025

Index Construction

Reducers

¢ O0y
¥\
S

Lo\

28.03.2025

Index Construction

Final summary

A . Ap. G

% . A, . B

28.03.2025

Index Construction

Updating an index

Large document collections are typically not
static => documents being added, deleted,
updated

Two ways:

 Periodic reconstruction
* Auxiliary index

28.03.2025

Index Construction

Auxiliary index

Store new documents in memory. Merge when

memory full.

28.03.2025

Computer
Information

Course

Computer
Information

Course

=) N B8
=) Il BN
== Il BN B
=) N B

) [I I N N
— NN .
—EEEE
= I I N N I

Auxiliary inde»

Auxiliary index

Deletion

Invalidated documents get filtered out
when returning query results

Use invalid bit to filter results away.
ll“llllllllillllilililil

conpier | e [N 1 1 N I D
B crveicn. ey [1 N I N D
B e m I N

28.03.2025

Auxiliary index

Logarithmic merging

28.03.2025

Auxiliary index

Logarithmic merging

Complexity: O(T log (T / n) instead of O(T?/ n)
n. size of auxiliary index
T. total number of postings

28.03.2025

Exercise 4

Index construction

* Questions about BSBI / SPIMI
* Logarithmic merging

28.03.2025

Kahoot

hitps:/create.kahoot.it/details/
ex-04-index-construction/89fcé

ef/-2262-4924-888d-9549940c
Je/4

28.03.2025

https://create.kahoot.it/details/ex-04-index-construction/89fc6ef7-2262-4924-888d-9549940c0e74
https://create.kahoot.it/details/ex-04-index-construction/89fc6ef7-2262-4924-888d-9549940c0e74
https://create.kahoot.it/details/ex-04-index-construction/89fc6ef7-2262-4924-888d-9549940c0e74
https://create.kahoot.it/details/ex-04-index-construction/89fc6ef7-2262-4924-888d-9549940c0e74

